

    
      
          
            
  [image: _images/basic_diagram.png]

Welcome to mqttgateway

mqttgateway is a python framework to build consistent gateways to MQTT networks.


What it does:


	it deals with all the boilerplate code to manage MQTT connections, load configuration
and other data files, and create log handlers;


	it encapsulates the interface in a class that needs only 2 methods, an initialisation method
(__init__) and a loop method (loop or loop_start);


	it creates an intuitive messaging abstraction layer between the wrapper and the interface;


	it isolates the syntax and keywords of the MQTT network from the interface.






Who is it for:

Developers of MQTT networks in a domestic environment looking to adopt a definitive syntax for
their MQTT messages and to build gateways with their devices that are not MQTT enabled.



Available interfaces

Check the existing fully developped interfaces.  Their names usually follows the
pattern <interface_name>2mqtt, for example
musiccast2mqtt [https://musiccast2mqtt.readthedocs.io/].

This library comes with a dummy interface to test the installation and that can be used
as a template.



Links


	Documentation on readthedocs [http://mqttgateway.readthedocs.io/].


	Source on github [https://github.com/ppt000/mqttgateway].


	Distribution on pypi [https://pypi.org/project/mqttgateway/].






Contents



	1. Overview
	1.1. Objective

	1.2. Description

	1.3. Usage

	1.4. Installation





	2. Installation
	2.1. Download

	2.2. Configuration

	2.3. Launch

	2.4. The mapping data

	2.5. Deploying a gateway





	3. Description
	3.1. The message model

	3.2. Bridging MQTT and the interface

	3.3. Application structure





	4. Tutorial
	4.1. The Need

	4.2. The Solution

	4.3. Implementation

	4.4. The interface

	4.5. Wrapping it all up

	4.6. Launch





	5. Configuration

	6. Package Documentation
	6.1. Warning

	6.2. Package contents

	6.3. Modules

	6.4. mqttgateway.app_properties module

	6.5. mqttgateway.dummy_interface module

	6.6. mqttgateway.dummy_start module

	6.7. mqttgateway.init_logger module

	6.8. mqttgateway.load_config module

	6.9. mqttgateway.mqtt_client module

	6.10. mqttgateway.mqtt_map module

	6.11. mqttgateway.start_gateway module

	6.12. mqttgateway.throttled_exception module





	7. Indices and Tables









          

      

      

    

  

    
      
          
            
  
1. Overview


1.1. Objective

When setting up an IoT eco-system with a lot of different
devices, it becomes quickly difficult to have them talking to each other.
A few choices need to be made to solve this problem.
This project assumes that one of those choices has been made: using
MQTT [http://mqtt.org/] as the messaging transport.
This project then intends to help in the next set of choices to make:
defining a messaging model and expressing it in an MQTT syntax to be shared by all devices.

This model is implemented as a python library aimed at facilitating coding the gateways
between devices that do not support natively MQTT communication and the MQTT network.
These gateways can then run as services on machines connected to these
devices via whatever interface is available: serial, Bluetooth, TCP, or else.

[image: _images/basic_diagram.png]


1.2. Description

This project has two parts:


	The definition of the messaging model.
It is an abstraction layer that defines a message by a few characteristics, adapted to
domestic IoT environments, that help resolving the destination and purpose of the
message in a flexible and intuitive way.


	The implementation of this model through a python library.
The library takes care of formatting and translating back and forth the messages
between their MQTT syntax and their internal representation, as well as managing
the connection to the broker and various application necessities.




For more information, go to Description.



1.3. Usage

This project is provided with the core library,
and an example interface (the dummy interface) that does not
interface with anything but shows how the system works.
Once installed, running the application dummy2mqtt allows to test the basic
configuration and show how it is reacting to incoming MQTT messages, for example.

Developers can then write their own interface by using the dummy interface
as a template, or following the tutorial alongside the theoretical interface entry.

End users will download already developed interfaces, for which this library will simply
be a dependency.

For a complete guide on how to develop an interface, go to Tutorial.



1.4. Installation

The installation can be done with pip, on both Linux and Windows systems.
The only dependency is the paho.mqtt [https://pypi.python.org/pypi/paho-mqtt] library.

For the full installation guide, go to Installation.





          

      

      

    

  

    
      
          
            
  
2. Installation


2.1. Download

Get the library from the PyPi repository with the pip command, preferably using the --user option:

pip install --user mqttgateway





Alternatively use the bare pip command if you have administrator rights or if you are in a
virtual environment.

pip install mqttgateway





Running pip also installs an executable file (exe in Windows or executable python
script in Linux) called dummy2mqtt.  It launches the demo interface dummy with the
default configuration. Its location should be %APPDATA%\Python\Scripts\dummy2mqtt.exe
on Windows and ~/.local/bin/dummy2mqtt on Linux
(it probably depends on the distribution though…).
If not, please search for the file manually.

Also, those same locations should be already defined in the PATH environment variable and
therefore the executable should launch from any working directory.  If not, the variable will
have to be updated manually, or the executable needs to be specified with its real path.



2.2. Configuration

A configuration file is needed for each interface.  In the library, the default interface dummy
has its own configuration file dummy2mqtt.conf inside the package folder.

The configuration file has a standard INI syntax, as used by the standard library
ConfigParser with sections identified by [SECTION] and options within sections identified
by option:value.  Comments are identified with a starting character #.

There are four sections:


	[MQTT] defines the MQTT parameters, most importantly the IP address of the broker
under the option host.
The address of the MQTT broker should be provided in the same format
as expected by the paho.mqtt library, usually a raw IP address
(192.168.1.55 for example) or an address like test.mosquitto.org.
The default port is 1883, if it is different it can also be indicated
in the configuration file under the option port.
Authentication is not available at this stage.


	[LOG] defines the different logging options.  The library can log to the console,
to a file, send emails or just send the logs to the standard error output.
By default it logs to the console.


	[INTERFACE] is the section reserved to the actual interface using this library.
Any number of options can be inserted here and will be made available to the interface
code through a dictionary initialised with all the option:value pairs.


	[CONFIG] is a section reserved to the library to store information about the configuration
loading process.  Even if it is not visible in the configuration file it is created at runtime.




For more details about the .conf file, its defaults and the command line arguments,
go to Configuration.



2.3. Launch

If pip installed correctly the executable files, just launch it from anywhere:

dummy2mqtt





Launched without argument, the application looks for a configuration file in the same
directory as the targeted script with the same name as the application, with a
.conf extension.  In this case, it finds the file dummy2mqtt.conf inside the
package folder:

With the configuration provided, the application uses test.mosquitto.org as MQTT
broker and will log messages from all levels only into the console.

Once started, the application logs a banner message and the full configuration used.
Check here that all the options are as intended.

Then the log should show if the MQTT connection was successful and display
the topics to which the application has subscribed.

After the start-up phase, the dummy interface logs any MQTT messages it receives.
It also emits a unique message every 30 seconds.

Start your a MQTT monitor app (I use mqtt-spy [https://kamilfb.github.io/mqtt-spy/]).
Connect to your MQTT broker (here it is test.mosquitto.org) and subscribe to the topic:

testmqttgtw/dummyfunction/#





You should see the messages arriving every 30 seconds in the MQTT monitor,
as well as in the log.

As the application has subscribed as well to this same topic testmqttgtw/dummyfunction/#,
it receives back from the broker the same message it just sent, as can be seen in the log.

Publish now a message from the MQTT monitor:

topic: testmqttgtw/dummyfunction//kitchen//me/C
payload: audio_on





You should see in the log that the MQTT message has been received
by the gateway, and that it has also been processed correctly by the mapping
processor: a first log indicates that the MQTT message has been received by the
mqttgateway library, a second log indicates that the internal message
has been received by the dummy interface, with the changed (mapped)
values of the various characteristics.


Note

When the application sends a message with a topic it has subscribed to (as above),
it receives it back from the broker, as seen before.  Indeed a log showed that
the MQTT message was received by the library.  However, because of a feature that
silences echo messages (via the sender characteristic), the library stops
the message and does not send it to the dummy interface.  That is why there is
no second log in that case.


  
    

    3. Description
    

    
 
  

    
      
          
            
  
3. Description


3.1. The message model

The primary use case for this project is a domestic environment
with multiple connected devices of any type
where MQTT has been selected as the communication transport.

For the devices that communicate natively through MQTT,
there is a need to agree on a syntax that makes the exchange of messages coherent.

For those devices that are not MQTT enabled,
there is a need to develop ad-hoc gateways to bridge
whatever interface they use natively (serial, Bluetooth, TCP…) to one
that is MQTT based.

This library addresses both requirements.


3.1.1. Example

In the example below, a smart home has some lighting connected
in four different rooms through a proprietary network, four audio-video
devices connected through another proprietary network, and some
other devices that are already MQTT-enabled, but that still need
to speak a common language.

[image: Diagram of a smart home with some connected devices]
The first objective of this project is to define a common
MQTT syntax, and make it as intuitive as possible.  Ideally,
a human should be able to write an MQTT message off-hand and operate
successfully any device in the network.



3.1.2. Message Addressing

The first step of any message is to define its destination.  A flexible
addressing model should allow for a heuristic approach based on a
combination of characteristics of the recipient (for example its type and location),
instead of a standard deterministic approach (for example a unique device id).

A combination of these four characteristics cover those requirements:


	the function of the device: lighting, security, audio-video, etc;


	its location;


	its gateway: which application is managing that device, if any;


	the name of the device.




In our example, the MQTT point of view shows how those four characteristics,
or just a subset, can define all the devices in the network.

[image: Diagram of a smart home from the MQTT network point of view]
Some considerations about those four characteristics:


	not all four characteristics need to be provided to address succesfully
a device;


	the device name can be generic (e.g. spotlight) or specific and unique
within the network (e.g. lightid1224); if the generic case name is used,
obviously other characteristics would be needed in the message
to address the device.


	any device can respond to more than one value for some characteristics;
for example a device could have more than one function:
a connected light fitted with a presence sensor could have both lighting
and security functions.


	the gateway and a unique device id are the most deterministic
characteristics and should be the choices for fast and unambiguous
messaging.


	the location is probably the most intuitive characteristic;
it should represent the place where the device
operates and not where it is physically located (e.g. an audio amplifier
might be in the basement but if it powers speakers in the living room then
that should be its the location); but the location might even not be
defined, for example for a house-wide security system, or an audio
network player that can broadcast to different rooms.


	the function is another important intuitive characteristic; not only it
helps in addressing devices, but
it also clarifies ambiguous commands (e.g. POWER_ON with lighting
or with audiovideo means different things).




Those four characteristics should ensure that the messaging model
is flexible enough to be heuristic or deterministic.  A gateway
will decide how flexible it wants to be.  If it has enough processing bandwidth,
it can decide to subscribe to all lighting messages for example, and then parse
all messages received to check if they are actually addressed to it.
Or it can subscribe only to messages addressed specifically to itself
(through the gateway name for example), restricting access only to the senders that
know the name of that gateway.



3.1.3. Message Content

The content of a message is modelled in a standard way with those 3 elements:


	a type with 2 possible values: command for messages that are requiring
an action to be performed, or status for messages that only broadcast
a state;


	an action that indicates what to do or what the status is referring to;


	a set of arguments that might complete the action characteristic.




The key characteristic here is the action, a string representing the what to do,
with the optional arguments helping to define by how much for example.
It can be POWER_ON and POWER_OFF on their own for example (no argument), or
SET_POWER with the argument power:ON or power:OFF, or both.
The interface decides what actions it recognises.



3.1.4. Message Source

The sender, which can be a single device if it has direct access to the MQTT network
or a gateway, is another characteristic in this model.  It can be very useful in
answering status requests in a targeted way, for example.




3.2. Bridging MQTT and the interface

There are therefore a total of 8 characteristics in our message model:


	function,


	gateway,


	location,


	device,


	type,


	action,


	argument of action,


	sender.




They are all strings except type which can only have 2 predefined values.
They are all the fields that can appear in a MQTT message, either in the topic or in the payload.
They are all attributes of the internal message class that is used to exchange
messages between the library and the interface being developed.
They are all the characteristics available to the developer to code its interface.


3.2.1. The internal message class

The internal message class internalMsg defines
the message objects stored
in the lists that are shared by the library and the interface.
There is a list for incoming messages and a list for outgoing messages.
At its essence, the library simply parses MQTT messages into internal ones, and back.
The library therefore defines the MQTT syntax by the way it converts the messages.



3.2.2. The conversion process

The conversion process happens inside the class msgMap
with two methods to translate back and forth messages between MQTT and the internal message class.

These methods achieve 2 things:


	define the syntax of the MQTT messages in the way the various
characteristics are positioned within the MQTT topic and payload;


	if mapping is enabled, map the keywords for every characteristic between
the MQTT vocabulary and the internal one;
this is done via dictionaries initialised by a mapping file.






3.2.3. The MQTT syntax

The library currently defines the MQTT syntax as follows.

The topic is structured like this:

root/function/gateway/location/device/sender/type





where root can be anything the developer wants (home for example)
and type can be only C or S.

The payload is simply the action alone if there are no arguments:

action_name





or the action with the arguments all in a JSON string like this:

{"action":"action_name","arg1":"value1","arg2":"value2",...}





where the first action key is written as is and the other argument keys
can be chosen by the developer and will be simply copied in the argument
dictionary.

This syntax is defined within the 2 methods doing the conversions.
The rest of the library is agnostic to the MQTT syntax.
Therefore one only needs to change these 2 methods to change the syntax.
However in that case, all the devices and other gateways obviously have to
adopt the same new syntax.



3.2.4. The mapping data

By default, when the mapping option is disabled, the keywords used in the MQTT messages
are simply copied in the internal class.
So, for example, if the function in the MQTT
message is lighting, then the attribute function in the class
internalMsg will also be the string lighting.
If for any reason a keyword has to change on the MQTT side (maybe because a new device
is not flexible enough and imposes its own keywords), it would have to be reflected
in the code, which is unfortunate.  For example this new device, a connected bulb,
uses light as function and not lighting, but lighting is now hard coded
in the interface.
In order for the interface to recognise this new keyword, a mapping can be introduced
that links the keyword light in the MQTT messages to lighting in the internal
representation of messages.  This mapping is defined in a separate JSON file,
and the code does not need to be modified.

The mapping option can be enabled (it is off by default) in the configuration file,
in which case the location of the JSON file is required.
All the keyword characteristics (except type) can (but do not have to) be mapped
in that file:
function, gateway, location, device, sender, action,
argument keys and argument values.

Furthermore, to give more flexibility, there are 3 mapping options available for each
characteristic that need to be specified:


	none: the keywords are left unchanged, so there is no need to provide
the mapping data for that characteristic;


	strict: the conversion of the keywords go through the provided map,
and any missing keyword raises an exception;
the message with that keyword is probably ignored;


	loose: the conversion of the keywords go through the provided map,
but missing keywords do not raise any error and are passed unchanged.




The mapping between internal keywords and MQTT ones is a one-to-many relationship
for each characteristic.
For each internal keyword there can be more than one MQTT keyword,
even if there will have to be one which has priority in order to define without
ambiguity the conversion from internal to MQTT keyword.
In practice, this MQTT keyword will be the first one in the list provided in the
mapping (see below) and the other keywords of that list can be considered aliases.

Going back to the example above, for the unique internal function
keyword lighting, we would define a list of MQTT keywords as
["light", "lighting"], so that lighting in internal code gets converted
to light in MQTT (as it is the new priority keyword) but lighting in
MQTT is still accepted as a keyword that gets converted to lighting
in internal messages.

The mapping data is provided by a JSON formatted file.
The JSON schema mqtt_map_schema.json is available in the gateway package.
New JSON mapping files can be tested against this schema (I use the online
validation tool https://www.jsonschemavalidator.net/)

The mapping file also contains the topics to subscribe to and the root token
for all the topics.  These values override the ones found in the configuration file
if the mapping feature is enabled.




3.3. Application structure

The mqttgateway package contains all the files needed to run a full application,
in this case the dummy2mqtt application.

The files related to the implementation of the dummy interface are:


	dummy_start.py: the launcher script; call this script to launch the application.


	dummy_interface.py: the module that defines the class and methods called by the
mqttgateway library to actually run the interface.


	dummy2mqtt.conf: the configuration file for the dummy interface, compulsory.


	dummy_map.json: the mapping file, optional.




The files exclusively related to the library are:


	start_gateway.py: the main module of the library, it configures the application,
initialise the interface and the MQTT connection, and launches the loop(s).


	mqtt_client.py: the internal MQTT class, inherited from the paho-mqtt library,
defines the algorithm to reconnect automatically when using the loop() method.


	mqtt_map.py: defines the internal message class, the maps and their methods, and
loads the maps if any.


	app_properties.py: utility, defines a singleton with application-wide
properties.


	load_config.py: utility, loads the configuration from a file.


	init_logger.py: utility, initialise handlers and loggers.


	default.conf: file with all the configuration options and their defaults.


	mqtt_map_schema.json: JSON schema to check the mapping files.




[image: Architecture of the library]
[image: Loop architecture in mono thread mode]
[image: Loop architecture in multi thread mode]




          

      

      

    

  

  
    

    4. Tutorial
    

    
 
  

    
      
          
            
  
4. Tutorial


Note

This tutorial refers to an early library. An update is in development.


  
    

    5. Configuration
    

    
 
  

    
      
          
            
  
5. Configuration


Note

In development

In the meantime, the default configuration, which is in the file
default.conf inside the library package, is well documented
and is a good starting point to understand the various options.


  
    

    6. mqttgateway package
    

    
 
  

    
      
          
            
  
6. mqttgateway package


6.1. Warning

As of 24 May 2018, most of the docstrings are obsolete.
They will be updated gradually as soon as possible.



6.2. Package contents

The mqttgateway library helps in building gateways between connected devices and MQTT systems.

This package has 4 groups of files:


	the core of the library made of the modules:



	start_gateway.py which contains the script for the
application initialisation and main loop;


	mqtt_client.py which defines the child of the MQTT Client class
of the paho library, needed to implement a few extra features;


	mqtt_map.py which defines the internal message class
internalMsg
and the mapping class msgMap.









	the utilities used by the core and that are really application agnostic; these
are in the modules:



	app_properties.py, a singleton that holds
application wide data like name, directories where to look for files, configuration
and log information;


	init_logger, used by app_properties to initialise
the loggers and handlers;


	load_config, used by app_properties to load the
configuration;


	throttled_exception, an exception class that
mutes events if they are too frequent, handy for connection problems happening in fast
loops.









	the dummy interface, an empty interface to test the installation of the
library and to be used as a template to write a new interface, and which is made of the
modules:



	dummy_start, the launcher script;


	dummy_interface, the actual interface main class.









	various data files:



	
	default.conf, the file containing all the configuration options and their default

	values;







	mqtt_map_schema.json, the schema of the mapping files;


	dummy_map.json and dummy2mqtt.conf, the map and configuration file of the
dummy interface.













6.3. Modules



6.4. mqttgateway.app_properties module



6.5. mqttgateway.dummy_interface module



6.6. mqttgateway.dummy_start module



6.7. mqttgateway.init_logger module



6.8. mqttgateway.load_config module



6.9. mqttgateway.mqtt_client module

This is a child class of the MQTT client class of the PAHO library.

It includes the management of reconnection when using only the loop() method,
which is not included natively in the current PAHO library.

Notes on MQTT behaviour:


	if not connected, the loop and publish methods will not do anything,
but raise no errors either.


	the loop method handles always only one message per call.





	
exception mqttgateway.mqtt_client.connectionError(msg=None)

	Bases: mqttgateway.throttled_exception.ThrottledException

Base Exception class for this module, inherits from ThrottledException






	
mqttgateway.mqtt_client.mqttmsg_str(mqttmsg)

	Returns a string representing the MQTT message object.

As a reminder, the topic is unicode and the payload is binary.






	
mqttgateway.mqtt_client._on_connect(client, userdata, flags, return_code)

	The MQTT callback when a connection is established.

It sets to True the connected attribute and subscribes to the
topics available in the message map.

As a reminder, the flags argument is a dictionary with at least
the key session present (with a space!) which will be 1 if the session
is already present.






	
mqttgateway.mqtt_client._on_subscribe(client, userdata, mid, granted_qos)

	The MQTT callback when a subscription is completed.

Only implemented for debug purposes.






	
mqttgateway.mqtt_client._on_disconnect(client, userdata, return_code)

	The MQTT callback when a disconnection occurs.

It sets to False the mg_connected attribute.






	
mqttgateway.mqtt_client._on_message(client, userdata, mqtt_msg)

	The MQTT callback when a message is received from the MQTT broker.

The message (topic and payload) is mapped into its internal representation and
then appended to the incoming message list for the gateway interface to
execute it later.






	
class mqttgateway.mqtt_client.mgClient(host='localhost', port=1883, keepalive=60, client_id='', on_msg_func=None, topics=None, userdata=None)

	Bases: paho.mqtt.client.Client

Class representing the MQTT connection. mg means MqttGateway.


	Inheritance issues:

	The MQTT paho library sets quite a few attributes in the Client class.
They all start with an underscore and have standard names (_host, _port,…).
Also, some high level methods are used extensively in the paho library itself,
in particular the connect() method.  Overriding them is dangerous.
That is why all the homonymous attributes and methods here have an mg_
prepended to avoid these problems.






	Parameters:

	
	host (string) – a valid host address for the MQTT broker (excluding port)


	port (int) – a valid port for the MQTT broker


	keepalive (int) – see PAHO documentation


	client_id (string) – the name (usually the application name) to send to the MQTT broker


	on_msg_func (function) – function to call during on_message()


	topics (list of strings) – e.g.[‘home/audiovideo/#’, ‘home/lighting/#’]


	userdata (object) – any object that will be passed to the call-backs









	
lag_end()

	Method to inhibit the connection test during the lag.

One of the feature added by this class over the standard PAHO class is the
possibility to reconnect when disconnected while using only the loop() method.
In order to achieve this, the connection is checked regularly.
At the very beginning of the connection though, there is the possibility of a race
condition when testing the connection state too soon after requesting it.
This happens if the on_connect call-back is not called
fast enough by the PAHO library and the main loop tests the connection state
before that call-back has had the time to set the state to connected.
As a consequence the automatic reconnection feature gets triggered
while a connection is already under way, and the connection process gets jammed
with the broker.
That’s why we need to leave a little lag before testing the connection.
This is done with the function variable lag_test, which is assigned to
this function (lag_end) at connection, and switched to a dummy lambda
after the lag has passed.






	
lag_reset()

	Resets the lag feature for a new connection request.






	
mg_connect()

	Sets up the lag feature on top of the parent connect method.

See lag_end for more information on the lag feature.






	
mg_reconnect()

	Sets up the lag feature on top of the parent method.






	
loop_with_reconnect(timeout)

	Implements automatic reconnection on top of the parent loop method.

The use of the method/attribute lag_test() is to avoid having to test the
lag forever once the connection is established.
Once the lag is finished, this method gets replaced
by a simple lambda, which hopefully is much faster than calling the time library and
doing a comparison.











6.10. mqttgateway.mqtt_map module



6.11. mqttgateway.start_gateway module



6.12. mqttgateway.throttled_exception module

An exception class that throttles events in case an error is triggered too often.


	
exception mqttgateway.throttled_exception.ThrottledException(msg=None, throttlelag=10, module_name=None)

	Bases: exceptions.Exception

Exception class base to throttle events

This exception can be used as a base class instead of Exception.
It adds a counter and a timer that allow to silence the error for a while if
desired.  Only after a given period a trigger is set to True to indicate
that a number of errors have happened and it is time to report them.

It defines 2 members:


	trigger is a boolean set to True after the requested lag;


	report is a string giving some more information on top of the latest message.




The code using these exceptions can test the member trigger and decide to silence
the error until it is True.  At any point one can still decide to use these exceptions
as normal ones, ignore the trigger and report members and just raise the
exception as normal.

Usage:

try:
    #some statements that might raise your own exception derived from ThrottledException
except YourExceptionError as err:
    if err.trigger:
        log(err.report)






	Parameters:

	
	msg (string) – the error message, as for usual exceptions, optional


	throttlelag (int) – the lag time in seconds while errors should be throttled, defaults
to 10 seconds


	module_name (string) – the calling module to give extra information, optional









	
_count = 0

	




	
_timer = 1656078418.908885

	











          

      

      

    

  

  
    

    7. Indices and tables
    

    
 
  

    
      
          
            
  
7. Indices and tables


	Index


	Module Index







          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       mqttgateway	
       

     
       	
       	   
       mqttgateway.mqtt_client	
       

     
       	
       	   
       mqttgateway.throttled_exception	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 _
 | C
 | L
 | M
 | T
 


_


  	
      	_count (mqttgateway.throttled_exception.ThrottledException attribute)


      	_on_connect() (in module mqttgateway.mqtt_client)


      	_on_disconnect() (in module mqttgateway.mqtt_client)


  

  	
      	_on_message() (in module mqttgateway.mqtt_client)


      	_on_subscribe() (in module mqttgateway.mqtt_client)


      	_timer (mqttgateway.throttled_exception.ThrottledException attribute)


  





C


  	
      	connectionError


  





L


  	
      	lag_end() (mqttgateway.mqtt_client.mgClient method)


  

  	
      	lag_reset() (mqttgateway.mqtt_client.mgClient method)


      	loop_with_reconnect() (mqttgateway.mqtt_client.mgClient method)


  





M


  	
      	mg_connect() (mqttgateway.mqtt_client.mgClient method)


      	mg_reconnect() (mqttgateway.mqtt_client.mgClient method)


      	mgClient (class in mqttgateway.mqtt_client)


  

  	
      	mqttgateway (module)


      	mqttgateway.mqtt_client (module)


      	mqttgateway.throttled_exception (module)


      	mqttmsg_str() (in module mqttgateway.mqtt_client)


  





T


  	
      	ThrottledException


  







          

      

      

    

  

  
    

    Concepts
    

    
 
  

    
      
          
            
  
Concepts


The message model

The primary use case for this project is a domestic environment
with multiple devices of any type: lights, audio video components,
security devices, heating, air conditioning, controllers, keypads, etc…
For many (good) reasons, MQTT has been selected as the communication
protocol. But only a few, if any, devices are MQTT enabled.
For those that are not, there is a need to develop ad-hoc gateways to bridge
whatever interface they use natively (serial for example) to one that is MQTT based.
Even for those devices that communicate natively through MQTT, there is a need to agree on a
syntax that makes the exchange of messages coherent.


Example

In the example below, a smart home has some lighting connected
in four different rooms through a proprietary network, four audio-video
devices connected through another proprietary network, and some
other devices that are already MQTT-enabled, but which still need
to speak a common language.

[image: Diagram of a smart home with some connected devices]
One of the objectives of this project is not only to define a common
MQTT syntax, but also to make it as intuitive as possible.  Ideally,
a human should be able to write an MQTT message off-hand and operate
successfully any device in the network.



Message Addressing

The first step of any message is to define its destination.  A flexible
addressing model should allow for a heuristic approach based on a
combination of characteristics of the recipient, on top of the
standard deterministic approach (e.g. a unique device id).
Four characteristics are usually considered:


	the function of the device: lighting, security, audio-video, etc;


	its location;


	its gateway: which application is managing that device, if any;


	the name of the device.




In our example, the MQTT point of view shows how those four characteristics, or just a subset,
can define all the devices in the network.

[image: Diagram of a smart home from the MQTT network point of view]
Some considerations about those four characteristics:


	not all four characteristics need to be provided to address succesfully
a device;


	the device name can be generic (e.g. spotlight) or specific and unique
within the network (e.g. lightid1224); in the generic case, obviously
other characteristics are needed to address the device.


	any device can have more than one value for each characteristics,
particularly the function and device ones (it is probable
that the gateway and the location characteristics are unique for a given device);


	the location is important and probably the most intuitive characteristic
of all; preferably it should represent the place where the device
operates and not where it is physically located (e.g. an audio amplifier
might be in the basement but it powers speakers in the living room;
the location should be the living room); but the location might even not be
defined (e.g. to address the security system of the whole house, or an audio
network player that can broadcast to different channels or zones).


	the gateway is the most deterministic characteristic (alongside a unique
device id); this should be the chosen route for fast and unambiguous
messaging.


	the function is another important intuitive characteristic; not only it
helps in addressing devices (combined with a location for example), but
it also clarifies ambiguous commands (e.g. POWER_ON with lighting
or with audiovideo means different things). However things can get
more complicated if a device has more than one function; this should be
allowed, it is up to the gateway to make sure any ambiguity is resolved
from the other characteristics.




Those four characteristics should ensure that the messaging model
is flexible enough to be heuristic or deterministic.  A gateway
will decide how flexible it wants to be.  If it has enough processing bandwidth,
it can decide to subscribe to all lighting messages for example, and then parse
all messages received to check if they are actually addressed to it.
Or it can subscribe only to messages addressed specifically to itself
(through the gateway name for example), restricting access only to the senders that
know the name of that gateway.



Message Content

The content of a message in the context of domestic IoT can be modelled
in many different ways.  This project splits it into 3 characteristics:


	a type with 2 possible values: command for messages that are requiring
an action to be performed, or status for messages that only broadcast
a state;


	an action that indicates what to do or what the status is referring to;


	a set of arguments that might complete the action characteristic.




The key characteristic here is the action, a string representing the what to do,
with the optional arguments helping to define by how much for example.
It can be POWER_ON and POWER_OFF on their own for example (no argument), or
SET_POWER with the argument power:ON or power:OFF, or both.
The interface decides what actions it recognises, the more the better.



Message Source

The sender, which can be a device or another gateway for example, is
an optional characteristic in our message model.  It can be very useful in
answering status requests in a targeted way, for example.




Bridging MQTT and the interface

There are therefore a total of 8 characteristics in our message model:


	function,


	gateway,


	location,


	device,


	type,


	action,


	argument of action,


	sender.




They are all strings except type which can only have 2 predefined values.
They are all the fields that can appear in a MQTT message, either in the topic or in the payload.
They are all attributes of the internal message class that is used to exchange
messages between the library and the interface being developed.
They are all the characteristics available to the developer to code its interface.


The internal message class

The internal message class internalMsg defines the message objects stored
in the lists that are shared by the library and the interface.  There is a list for incoming
messages and a list for outgoing messages.
At its essence, the library simply parses MQTT messages into internal ones, and back.
The library therefore defines the MQTT syntax by the way it converts the messages.



The conversion process

The conversion process happens inside the class msgMap with the
methods MQTT2Internal() and Internal2MQTT().  These methods
achieve 2 things:


	define the syntax of the MQTT messages in the way the various
characteristics are positioned within the MQTT topic and payload;


	if mapping is enabled, map the keywords for every characteristic between
the MQTT vocabulary and the internal one; this is done via dictionaries initialised by a
mapping file.






The MQTT syntax

The library currently defines the MQTT syntax as follows.
The topic is structured like this:

root/function/gateway/location/device/source/type





where root can be anything the developer wants (home for example)
and type can be only C or S.

The payload is simply the action alone if there are no arguments:

action_name





or the action with the arguments all in a JSON string like this:

{"action":"action_name","arg1":"value1","arg2":"value2",...}





where the first action key is written as is and the other argument keys
can be chosen by the developer and will be simply copied in the argument
dictionary.

This syntax is defined within the 2 methods doing the conversions.  The rest of the library
is agnostic to the MQTT syntax.  Therefore one only needs to change these 2 methods to change
the syntax.  However in that case, all the devices and other gateways obviously have to
adopt the same new syntax.



The mapping data

By default, when the mapping option is disabled, the keywords used in the MQTT messages
are simply copied in the internal class.  So, for example, if the function in the MQTT
message is lighting, then the attribute function in the internalMsg will also
be lighting.
If for any reason a keyword has to change on either side, it has to be reflected on the other
one, which is unfortunate.  For example, let’s assume a location name in the MQTT vocabulary is basement and that is what is used in the internal code of the interface to start with. For
some reason the name in the MQTT vocabulary needs to be changed to lowergroundfloor.
In order for the interface to recognise this new keyword, a mapping can be introduced that links
the keyword lowergroundfloor in the MQTT messages to basement in the internal
representation of messages.  This mapping is defined in a separate JSON file, and the code does
not need to be modified.

The mapping option can be enabled (it is off by default) in the configuration file, in which
case the location of the JSON file is required.
All the keyword characteristics (except type) can (but do not have to) be mapped in that file:
function, gateway, location, device, sender, action, argument keys and
argument values.
To give more flexibility, there are 3 mapping options available for each characteristic that need
to be specified:


	none: the keywords are left unchanged, so there is no need to provide
the mapping data for that characteristic;


	strict: the conversion of the keywords go through the provided map,
and any missing keyword raises an exception; the message with that keyword is probably ignored;


	loose: the conversion of the keywords go through the provided map,
but missing keywords do not raise any error but are passed unchanged.




The mapping between internal keywords and MQTT ones is a one-to-many relationship
for each characteristic.  For each internal keyword there can be more than one MQTT keyword,
even if there will have to be one which has priority in order to define without ambiguity
the conversion from internal to MQTT keyword.  In practice, this MQTT keyword will be the
first one in the list provided in the mapping (see below) and the other keywords of that list
can be considered aliases.  Going back to the example above, for the unique internal location
keyword basement, we could define a list of MQTT keywords as
["lowergroundfloor", "basement"], so that basement in internal code gets converted
to lowergroundfloor in MQTT (as it is the new official keyword) but basement in
MQTT is still accepted as a keyword that gets converted to basement in internal messages.

In practice, the mapping data is provided by a JSON formatted file.  The JSON
schema mqtt_map_schema.json is available in the gateway package.
New JSON mapping files can be tested against this schema (I use the online
validation tool https://www.jsonschemavalidator.net/)
The mapping file also contains the topics to subscribe to and the root token
for all the topics.  These values override the ones found in the configuration file
if the mapping feature is enabled.






          

      

      

    

  

  
    

    Welcome to mqttgateway
    

    
 
  

    
      
          
            
  
Welcome to mqttgateway

mqttgateway is a python framework to build consistent gateways to MQTT networks.


What it does:


	it deals with all the boilerplate code to manage MQTT connections, load configuration
and other data files, and create log handlers;


	it encapsulates the interface in a class that needs only 2 methods, an initialisation method
(__init__) and a loop method (loop or loop_start);


	it creates an intuitive messaging abstraction layer between the wrapper and the interface;


	it isolates the syntax and keywords of the MQTT network from the interface.






Who is it for:

Developers of MQTT networks in a domestic environment looking to adopt a definitive syntax for
their MQTT messages and to build gateways with their devices that are not MQTT enabled.



Available interfaces

Check the existing fully developped interfaces.  Their names usually follows the
pattern <interface_name>2mqtt, for example
musiccast2mqtt [https://musiccast2mqtt.readthedocs.io/].

This library comes with a dummy interface to test the installation and that can be used
as a template.



Links


	Documentation on readthedocs [http://mqttgateway.readthedocs.io/].


	Source on github [https://github.com/ppt000/mqttgateway].


	Distribution on pypi [https://pypi.org/project/mqttgateway/].








          

      

      

    

  
_static/up-pressed.png





_images/architecture.png
mqttgateway Architecture

dummy_start.py

Importthe interface class,
Launch the gateway.

paho.mqtt.client

dummy_interface.py

Define the interface class.
implement the loop() or loop_start()
method.

Legend
. Interface modulesand files
dummy_map.json

Map between MQTT keywords and internal
code keywords.

Non-standard external library

dummy2mqtt.conf

Configuration file






_images/basic_diagram.png
qttgateway
m

1O
1O
1O
1O





_static/up.png





_images/iot_parameters.png
4 Identification Parameters:

Device~~_ _

Location - _ S~ -

Gateway Sso ~~ .
\ N N
* Function, » N
N

I
’
i

BEDROOM

OFFICE

LIGHTING «--------=""""""

KITCHEN

.

BASEMENT

Y <

GATEWAY

MQTT View

T7» OFFICE
SECURITY

GATEWAY

|

GARAGE
SECURITY

No LOCATION

AUDIO-VIDEO

BEDROOM

OFFICE

KITCHEN

AUDIO-VIDEO






_images/loop_mono_thread.png
Main Loop — mono thread

-

loop with reconnect() MQTT /oop()

Implementautomatic reconnection Call on_message() only if there is
before calling loop() an MQIT message.
Publish messages from prior loop.

Interface loop()
Bxecute all or some of the following actions, in the order that makes sense to the interface:
> Poll the device(s) for activity (commands or events) and, if any, ng
internal messages and append them to the relevant message lst.
> Process the incoming message list.
nd outgoing internal messages (responses or new commands) to the queue, if any.

MQTT publish()
Publish outgoing MQTT messages

tothe MQTT library.

interface.py

on_message()
Call mgtt2internaland append

message to the incoming list.

MQIT paho library






_images/domestic_iot.png
DOMESTIC IOT

BEDROOM

OFFICE

BASEMENT No LOCATION






_images/entry2mqtt.png
entry2mqtt GATEWAY

HOST

mqtt_gateways
* Maps MQTT and internal messages
* Managesthe MQTT connection

entrylnterface

* Connects to MCU via USB on serial
maQrr protocol.

Broker Converts raw messages from MCU
into internal messages to send
events to MQTT eco-system.
Converts internal messages into
raw commands to send to MCU.

waysAs Auz aen





_images/loop_multi_thread.png
Main Loop — multi thread

Thread @ - MQTT loop_start()
Process incoming MQTT message

MQTT Incoming
Queue

Thread @ - Gatewaylnterface loop_start()

Process Interface activity Poll the dey

(commands or events) ar
any, create corresponding
internal messages and append
them to the relevant message
list o

commands directly.

Process the incoming message list and a
outgoing internal messages (responses or new
commands) to the queue, if any. b

Thread @ - publish_msglist()
Process outgoing MQTT messages

Cinterf

MQIT paho library

MQTT Outgoing
Queue






_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to mqttgateway
        


        		
          Overview
          
            		
              Objective
            


            		
              Description
            


            		
              Usage
            


            		
              Installation
            


          


        


        		
          Installation
          
            		
              Download
            


            		
              Configuration
            


            		
              Launch
            


            		
              The mapping data
            


            		
              Deploying a gateway
            


          


        


        		
          Description
          
            		
              The message model
              
                		
                  Example
                


                		
                  Message Addressing
                


                		
                  Message Content
                


                		
                  Message Source
                


              


            


            		
              Bridging MQTT and the interface
              
                		
                  The internal message class
                


                		
                  The conversion process
                


                		
                  The MQTT syntax
                


                		
                  The mapping data
                


              


            


            		
              Application structure
            


          


        


        		
          Tutorial
          
            		
              The Need
            


            		
              The Solution
            


            		
              Implementation
            


            		
              The interface
              
                		
                  The constructor
                


                		
                  The loop method
                


                		
                  Other coding strategies
                


                		
                  The map file
                


              


            


            		
              Wrapping it all up
            


            		
              Launch
            


          


        


        		
          Configuration
        


        		
          Package Documentation
          
            		
              Warning
            


            		
              Package contents
            


            	