

 [image: _images/basic_diagram.png]

Welcome to mqttgateway

mqttgateway is a python wrapper to build consistent gateways to an MQTT network.

What it does:

	it deals with all the boilerplate code to manage an MQTT connection, load configuration
and other data files, and create log handlers,

	it encapsulates the interface in a class that needs only 2 methods __init__ and loop,

	it creates an intuitive messaging abstraction layer between the wrapper and the interface,

	it can isolate the syntax and keywords of the MQTT network from the internal ones of the interface.

Who is it for:

Developers of MQTT networks in a domestic environment looking to adopt a definitive syntax for their
MQTT messages and to build gateways with their devices that are not MQTT enabled.

Available interfaces

Check the existing fully developped interfaces. Their names usually follows the
pattern <interface_name>2mqtt, for example
musiccast2mqtt [https://musiccast2mqtt.readthedocs.io/].

This library comes with 2 interfaces:

	dummy: to test the environment and use as a template;

	entry: example used for the tutorial.

Links

	Documentation on readthedocs [http://mqttgateway.readthedocs.io/].

	Source on github [https://github.com/ppt000/mqttgateway].

	Distribution on pypi [https://pypi.org/project/mqttgateway/].

Contents

	1. Overview
	1.1. Objective

	1.2. Concepts

	1.3. Usage

	1.4. Installation

	2. Installation
	2.1. Download

	2.2. Configuration

	2.3. Launch

	2.4. First Run

	2.5. The mapping data

	2.6. Deploying a gateway

	3. Concepts
	3.1. The message model

	3.2. Bridging MQTT and the interface

	4. Tutorial
	4.1. The Need

	4.2. The Solution

	4.3. Implementation

	4.4. The interface

	4.5. Wrapping it all up

	4.6. Launch

	5. Configuration

	6. Project Description

	7. Package Documentation
	7.1. Warning

	7.2. Subpackages

	7.3. Submodules

	7.4. Module contents

Indices and tables

	Index

	Module Index

1. Overview

1.1. Objective

When setting up an IoT eco-system with a lot of different
devices, it becomes quickly difficult to have them talking to each other.
A few choices need to be made to solve this problem.
This project assumes that one of those choices has been made: using
MQTT [http://mqtt.org/] as the messaging transport.
This project then intends to help in the next set of choices to make:
defining a messaging model and expressing it in an MQTT syntax to be shared by all devices.

This model is implemented as a python library aimed at facilitating coding the gateways
between devices that do not support natively MQTT communication and the MQTT network.
These gateways can then run as services on machines connected to these
devices via whatever interface is available: serial, bluetooth, TCP, or else.

[image: _images/basic_diagram.png]

1.2. Concepts

This project has two parts:

	The definition of the messaging model.
It is an abstraction layer that defines a message not only by destination and content
but by a few attributes adapted to domestic IoT environments.

	The implementation of this model through a python library.
The library takes care of formatting and translating back and forth the messages
between their MQTT syntax and their internal representation.

For more information, go to Concepts.

1.3. Usage

This project is provided with the core library,
and an example interface (the dummy interface) that does not
interface with anything but shows how the system works.
Once installed, running the application dummy2mqtt allows to test the basic
configuration and show how it is reacting to incoming MQTT messages, for example.

Developers can then write their own interface by using the dummy interface
as a template, or following the tutorial alongside the theoretical interface entry.

End users will download already developped interfaces, for which this library will simply
be a dependency.

For a complete guide on how to develop an interface, go to Tutorial.

1.4. Installation

The installation can be done with pip, on both Linux and Windows systems.
The only dependency is the paho.mqtt [https://pypi.python.org/pypi/paho-mqtt] library.

For the full installation guide, go to Installation.

2. Installation

2.1. Download

Get the library from the PyPi repository with the pip command, preferrably using the --user option:

pip install --user mqttgateway

Alternatively use the bare pip command if you have administrator rights or if you are in a
virtual environment.

pip install mqttgateway

Running pip also installs an executable file (exe in Windows or executable python
script in Linux) called dummy2mqtt. It launches the demo interface dummy with the
default configuration. Its location should be UPDATE NEEDED HERE on Windows and
UPDATE NEEDED HERE on Linux. If not, search for the file manually.

Also, those same locations should be already defined in the PATH environment variable and
therefore the executable should launch from any working directory. If not, the variable will
have to be updated manually, or the executable needs to be specified with its real path.

2.2. Configuration

A configuration file is needed for each interface. In the library, the default interface dummy
has its own configuration file dummy2mqtt.conf inside the package folder dummy.

The configuration file has a standard INI syntax,
with sections identified by [SECTION] and options within sections identified
by option:value. Comments are identified with a starting character #.

There are four sections:

	[MQTT] defines the MQTT parameters, most importantly the IP address of the broker
under the option host.
The address of the MQTT broker should be provided in the same format
as expected by the paho.mqtt library, usually a raw IP address
(192.168.1.55 for example) or an address like test.mosquitto.org.
The default port is 1883, if it is different it can also be indicated
in the configuration file under the option port.
Authentication is not available at this stage.

	[LOG] defines the different logging options. The library can log to the console,
to a file, send emails or just send the logs to the standard error output.
By default it logs to the console.

	[INTERFACE] is the section reserved to the actual interface using this library.
Any number of options can be inserted here and will be made available to the interface
code through a dictionary initialised with all the option:value pairs.

	[CONFIG] is a section reserved to the library to store information about the configuration
loading process. It is not visible in the template files but it is created at runtime.

For more details about the .conf file, its defaults and the command line arguments,
go to Configuration.

2.3. Launch

If pip installed correctly the executable files, just launch it from anywhere:

dummy2mqtt

By default, the process will log messages from all levels into the console.
It should start printing a banner message to indicate the application has started,
then a list of the full configuration used.

If the MQTT connection is successful it should say so as well as
displaying the topics to which the application has subscribed.

2.4. First Run

After the start-up phase, the dummy interface logs (at a DEBUG level)
any MQTT messages it receives. It also emits a unique message every 30 seconds.
Start your favourite MQTT monitor app (I use the excellent
mqtt-spy [https://kamilfb.github.io/mqtt-spy/]).
Connect to your MQTT broker and subscribe to the topic:

home/+/dummy/+/+/+/C

You should see the messages arriving every 30 seconds in the MQTT monitor,
as well as in the log.

Publish now a message from the MQTT monitor:

topic: home/lighting/dummy/office/undefined/me/C
payload: LIGHT_ON

You should see in the log that the message has been received
by the gateway, and that it has been processed correctly, meaning that
even if it does not do anything, the translation methods have worked.

2.5. The mapping data

The mapping data is an optional feature that allows to map some or every keyword in the
MQTT vocabulary into the equivalent keyword in the interface.
This mapping is a very simple one-to-one relationship between keywords of each characteristic,
and its use is only to isolate the internal code from any changes in the MQTT vocabulary.
For the dummy interface, the mapping data is provided by the text file
dummy_map.json. It’s just there as an example, as,
once again, the dummy interface really doesn’t do anything, and it is disabledby default.
Note that the map file also contains the root of the MQTT messages and the topics that the
interface should subscribe to.

For more details on the mapping data, go to Concepts.

2.6. Deploying a gateway

The objective of developing a gateway is to ultimately deploy it in a production environment.
To install a gateway as a service on a linux machine, go to Configuration.

3. Concepts

3.1. The message model

The primary use case for this project is a domestic environment
with multiple devices of any type: lights, audio video components,
security devices, heating, air conditioning, controllers, keypads, etc…
For many (good) reasons, MQTT has been selected as the communication
protocol. But only a few, if any, devices are MQTT enabled.
For those that are not, there is a need to develop ad-hoc gateways to bridge
whatever interface they use natively (serial for example) to one that is MQTT based.
Even for those devices that communicate natively through MQTT, there is a need to agree on a
syntax that makes the exchange of messages coherent.

3.1.1. Example

In the example below, a smart home has some lighting connected
in four different rooms through a proprietary network, four audio-video
devices connected through another proprietary network, and some
other devices that are already MQTT-enabled, but which still need
to speak a common language.

[image: Diagram of a smart home with some connected devices]
One of the objectives of this project is not only to define a common
MQTT syntax, but also to make it as intuitive as possible. Ideally,
a human should be able to write an MQTT message off-hand and operate
successfully any device in the network.

3.1.2. Message Addressing

The first step of any message is to define its destination. A flexible
addressing model should allow for a heuristic approach based on a
combination of characteristics of the recipient, on top of the
standard deterministic approach (e.g. a unique device id).
Four characteristics are usually considered:

	the function of the device: lighting, security, audio-video, etc;

	its location;

	its gateway: which application is managing that device, if any;

	the name of the device.

In our example, the MQTT point of view shows how those four characteristics, or just a subset,
can define all the devices in the network.

[image: Diagram of a smart home from the MQTT network point of view]
Some considerations about those four characteristics:

	not all four characteristics need to be provided to address succesfully
a device;

	the device name can be generic (e.g. spotlight) or specific and unique
within the network (e.g. lightid1224); in the generic case, obviously
other characteristics are needed to address the device.

	any device can have more than one value for each characteristics,
particularly the function and device ones (it is probable
that the gateway and the location characteristics are unique for a given device);

	the location is important and probably the most intuitive characteristic
of all; preferably it should represent the place where the device
operates and not where it is physically located (e.g. an audio amplifier
might be in the basement but it powers speakers in the living room;
the location should be the living room); but the location might even not be
defined (e.g. to address the security system of the whole house, or an audio
network player that can broadcast to different channels or zones).

	the gateway is the most deterministic characteristic (alongside a unique
device id); this should be the chosen route for fast and unambiguous
messaging.

	the function is another important intuitive characteristic; not only it
helps in addressing devices (combined with a location for example), but
it also clarifies ambiguous commands (e.g. POWER_ON with lighting
or with audiovideo means different things). However things can get
more complicated if a device has more than one function; this should be
allowed, it is up to the gateway to make sure any ambiguity is resolved
from the other characteristics.

Those four characteristics should ensure that the messaging model
is flexible enough to be heuristic or deterministic. A gateway
will decide how flexible it wants to be. If it has enough processing bandwidth,
it can decide to subscribe to all lighting messages for example, and then parse
all messages received to check if they are actually addressed to it.
Or it can subscribe only to messages addressed specifically to itself
(through the gateway name for example), restricting access only to the senders that
know the name of that gateway.

3.1.3. Message Content

The content of a message in the context of domestic IoT can be modelled
in many different ways. This project splits it into 3 characteristics:

	a type with 2 possible values: command for messages that are requiring
an action to be performed, or status for messages that only broadcast
a state;

	an action that indicates what to do or what the status is referring to;

	a set of arguments that might complete the action characteristic.

The key characteristic here is the action, a string representing the what to do,
with the optional arguments helping to define by how much for example.
It can be POWER_ON and POWER_OFF on their own for example (no argument), or
SET_POWER with the argument power:ON or power:OFF, or both.
The interface decides what actions it recognises, the more the better.

3.1.4. Message Source

The sender, which can be a device or another gateway for example, is
an optional characteristic in our message model. It can be very useful in
answering status requests in a targeted way, for example.

3.2. Bridging MQTT and the interface

There are therefore a total of 8 characteristics in our message model:

	function,

	gateway,

	location,

	device,

	type,

	action,

	argument of action,

	sender.

They are all strings except type which can only have 2 predefined values.
They are all the fields that can appear in a MQTT message, either in the topic or in the payload.
They are all attributes of the internal message class that is used to exchange
messages between the library and the interface being developed.
They are all the characteristics available to the developer to code its interface.

3.2.1. The internal message class

The internal message class internalMsg defines the message objects stored
in the lists that are shared by the library and the interface. There is a list for incoming
messages and a list for outgoing messages.
At its essence, the library simply parses MQTT messages into internal ones, and back.
The library therefore defines the MQTT syntax by the way it converts the messages.

3.2.2. The conversion process

The conversion process happens inside the class msgMap with the
methods MQTT2Internal() and Internal2MQTT(). These methods
achieve 2 things:

	define the syntax of the MQTT messages in the way the various
characteristics are positioned within the MQTT topic and payload;

	if mapping is enabled, map the keywords for every characteristic between
the MQTT vocabulary and the internal one; this is done via dictionaries initialised by a
mapping file.

3.2.3. The MQTT syntax

The library currently defines the MQTT syntax as follows.
The topic is structured like this:

root/function/gateway/location/device/source/type

where root can be anything the developer wants (home for example)
and type can be only C or S.

The payload is simply the action alone if there are no arguments:

action_name

or the action with the arguments all in a JSON string like this:

{"action":"action_name","arg1":"value1","arg2":"value2",...}

where the first action key is written as is and the other argument keys
can be chosen by the developer and will be simply copied in the argument
dictionary.

This syntax is defined within the 2 methods doing the conversions. The rest of the library
is agnostic to the MQTT syntax. Therefore one only needs to change these 2 methods to change
the syntax. However in that case, all the devices and other gateways obviously have to
adopt the same new syntax.

3.2.4. The mapping data

By default, when the mapping option is disabled, the keywords used in the MQTT messages
are simply copied in the internal class. So, for example, if the function in the MQTT
message is lighting, then the attribute function in the internalMsg will also
be lighting.
If for any reason a keyword has to change on either side, it has to be reflected on the other
one, which is unfortunate. For example, let’s assume a location name in the MQTT vocabulary is basement and that is what is used in the internal code of the interface to start with. For
some reason the name in the MQTT vocabulary needs to be changed to lowergroundfloor.
In order for the interface to recognise this new keyword, a mapping can be introduced that links
the keyword lowergroundfloor in the MQTT messages to basement in the internal
representation of messages. This mapping is defined in a separate JSON file, and the code does
not need to be modified.

The mapping option can be enabled (it is off by default) in the configuration file, in which
case the location of the JSON file is required.
All the keyword characteristics (except type) can (but do not have to) be mapped in that file:
function, gateway, location, device, sender, action, argument keys and
argument values.
To give more flexibility, there are 3 mapping options available for each characteristic that need
to be specified:

	none: the keywords are left unchanged, so there is no need to provide
the mapping data for that characteristic;

	strict: the conversion of the keywords go through the provided map,
and any missing keyword raises an exception; the message with that keyword is probably ignored;

	loose: the conversion of the keywords go through the provided map,
but missing keywords do not raise any error but are passed unchanged.

The mapping between internal keywords and MQTT ones is a one-to-many relationship
for each characteristic. For each internal keyword there can be more than one MQTT keyword,
even if there will have to be one which has priority in order to define without ambiguity
the conversion from internal to MQTT keyword. In practice, this MQTT keyword will be the
first one in the list provided in the mapping (see below) and the other keywords of that list
can be considered aliases. Going back to the example above, for the unique internal location
keyword basement, we could define a list of MQTT keywords as
["lowergroundfloor", "basement"], so that basement in internal code gets converted
to lowergroundfloor in MQTT (as it is the new official keyword) but basement in
MQTT is still accepted as a keyword that gets converted to basement in internal messages.

In practice, the mapping data is provided by a JSON formatted file. The JSON
schema mqtt_map_schema.json is available in the gateway package.
New JSON mapping files can be tested against this schema (I use the online
validation tool https://www.jsonschemavalidator.net/)
The mapping file also contains the topics to subscribe to and the root token
for all the topics. These values override the ones found in the configuration file
if the mapping feature is enabled.

4. Tutorial

Let’s go through a practical example, with a very simple protocol.

4.1. The Need

The gate of the house has an entry system, or intercom. Visitors push the bell button,
and if all goes well after a brief conversation someone in the house let them in by pushing
a gate release button.
Residents have a code to let themselves in: they enter the code and the system releases the
gate.

It would be nice to receive messages about these events, so that other events can be
triggered (like switching on lights by night). It would also be nice to trigger the gate
release independently of the entry system.

4.2. The Solution

We assume the entry system exposes the electrical contacts that operate the bell and the gate.
A micro-controller (an Arduino for example), can sense the electrical contacts going HIGH
or LOW and can communicate these levels to a computer through a serial port.
The micro-controller can also be told to switch ON or OFF a relay to release the gate.
We will call Entry System the combination of the actual entry system with the
micro-controller physical interface.

Note: a computer with the right sensors like a Raspberry Pi could sense directly
the electrical contacts without being shielded by another board.
However this use-case suits the tutorial, and is probably more reliable in the long run.

[image: _images/entry2mqtt.png]

4.3. Implementation

The micro-controller is programmed to communicate with very simple messages for each event:
each message is a pair of digits (in ASCII), the first indicating which contact the message is
about and the second indicating its state.
With 2 contacts (the bell and the gate), and 2 states (ON and OFF),
there are only 4 messages to deal with: 10, 11, 20 and 21.
More precisely, the micro-controller:

	sends a message when a contact goes ON (11 or 21) and
another one when it goes off (10 or 20);

	can also receive and process messages; in our case only the one triggering the gate release makes
sense (let’s say it is the message 21); we will assume that the micro-controller turns the
gate release OFF automatically after 3 seconds, for security, so there is no need to use the
gate release OFF message (20); similarly, there is no need to process the messages 11 or
10 as there is no need to operate the bell via MQTT.

The next step is therefore to code the interface for the computer connected to the micro-controller.
Let’s call the interface entry. This will be the label used in all the names in the project
(packages, modules, folders, class, configuration and mapping files).

4.4. The interface

The interface will be a Python package called entry2mqtt.
Let’s create it in a new folder entry with an empty module __init__.py.
In order not to start from scratch, let’s use the dummy interface as
a template. Copy the files dummy_start.py and dummy_interface.py from
the dummy package into the entry package, and change all the dummy instances
into entry (in the name of the file as well as inside the file).
The actual interface code has to be in the class entryInterface within the module
entry_interface.py.
It needs to have at least a constructor __init__ and a method called loop.

4.4.1. The constructor

The constructor receives 3 arguments: a dictionary of parameters and two message lists, one
for incoming messages and the other one for outgoing ones.

The dictionary of parameters is loaded with whatever we put in the configuration file in
the [INTERFACE] section. It’s up to us to decide what we put in there. Here we
probably only need a port name in order to open the serial port. We will
create the configuration file later, but for now we will assume that there will be an
option port:what_ever_it_is in the [INTERFACE] section, so we can retrieve it in our code.

The constructor will generally need to keep the message lists locally so that the loop
method can access them, so they will be assigned to local members.

Finally, the constructor will have to initialise the serial communication.

Starting from the template copied above, the only thing to add is the opening of the
serial port. Add at the top of the module:

import serial

(you need to have the PySerial library in your environment), and add the following line inside the constructor:

self._ser = serial.Serial(port=port, baudrate=9600, timeout=0.01)

The port variable is already defined in the template (check the code).
The baudrate has to be the same as the one set by the micro-controller.
Finally the timeout is fundamental. It has to be short enough so that
the main loop is not delayed too much. Without timeout, all the serial
exchanges will be blocking, which can not work in our mono-thread process.

Note

It is obviously possible to use natively multiple threads for the library
to avoid the blocking calls issues. Indeed, the paho library is already
doing so for its part. However this is not the case for now even if it might
be implemented in the future.

4.4.2. The loop method

This method is called periodically by the main loop to let our interface do
whatever it needs to do.

The loop method should deal with the incoming messages first, process them,
then read its own connected device for events, process them and stack in the outgoing list
whatever message needs to be sent, if there are any.

Use the code in the template to read the incoming messages list and add the following code
to deal with the case where the message is a command to open the gate:

if msg.action == 'GATE_OPEN':
 try:
 self._ser.write('21')
 except serial.SerialException:
 self._logger.info('Problem writing to the serial interface')

Always try to catch any exception that should not disrupt the whole application.
Most of them should not be fatal.

Then read the serial interface to see if there are any events:

try:
 data = self._ser.read(2)
except serial.SerialException:
 self._logger.info('Problem reading the serial interface')
 return
if len(data) < 2:
 return

If there is an event, convert it into an internal message and add it to the outgoing
message list:

if data[0] == '1':
 device = 'Bell'
 if data[1] == '0':
 action = 'BELL_OFF'
 elif data[1] == '1':
 action = 'BELL_ON'
 else:
 self._logger.info('Unexpected code from Entry System')
 return
elif data[0] == '2':
 device = 'Gate'
 if data[1] == '0':
 action = 'GATE_CLOSE'
 elif data[1] == '1':
 action = 'GATE_OPEN'
 else:
 self._logger.info('Unexpected code from Entry System')
 return
msg = internalMsg(iscmd=False, # it is a status message
 function='Security',
 gateway='entry2mqtt',
 location='gate_entry',
 device=device,
 action=action)
self._msgl_out.append(msg)

Finally, let’s send a command to switch on the light in case the gate was opened:

if data == '21':
 msg = internalMsg(iscmd=True,
 function='Lighting',
 location='gate_entry',
 action='LIGHT_ON')
 self._msgl_out.append(msg)

That’s it for the basic logic.

4.4.3. Other coding strategies

The resulting code is as simple as it can be. There are clearly more advanced coding strategies
to make the code more elegant and ultimately easier to mantain and upgrade.

For example, the class can be defined as a subclass of the Serial class, as this would
reflect well what it actually is, i.e. a higher level serial interface to a specific device.

Another possibility is to code the conversion of the messages from the serial interface
into internal messages through lookup tables (dictionaries) instead of nested ifs.

There are always better ways to code, but it is important to note that, as the loop is supposed
to run fast and is the piece of code that will run forever, it is worth investing some time on
how to make that part more efficient.

4.4.4. The map file

The mapping feature is disabled by default.
This means that all the keywords introduced earlier in the code (the commands GATE_OPEN, GATE_CLOSE, BELL_ON and BELL_OFF, as well as the location gate_entry and the
function identifiers Security``and ``Lighting) will all be passed on as is to the MQTT
messages, with exactly the same spelling and the same capitalised letters, if any.
This might be acceptable if there are only a few devices and gateways in the MQTT network
and the vocabulary stays quite small. But if the network grows and evolves, inevitably
changes will happen and it becomes inpractical to have to change the code any time an
identifier in the MQTT vocabulary had to change. That is where the mapping feature steps in.

The mapping feature can be enabled in the configuration file, in which case a file location
for the map needs to be provided:

...
mapping: on
mapfilename: /the/path/to/your/mapfile/filename.json

The map file location option is subject to the various rules for file paths used in this
library. In a nutshell, if the path is absolute there is no ambiguity, if it is relative the
library will try the path starting from the configuration file directory first, then try the
current working directory of the process, and finally the directory of the launching script.

The mapping file is a JSON formatted file with 2 objects (the root of the MQTT
messages and a list of topics to subscribe to) and up to 8 dictionaries, 1 for each
characteristic that can potentially be mapped. For each characteristic, a maptype needs to
be provided (it can be either none, loose or strict) and then an actual map, if
the maptype is not none.

For our interface, we assume we want to map all the data, as shown in the table:

Data to map for the entry gateway

	Characteritic

	MQTT Keyword

	Interface Keyword

	function

	security

	Security

	function

	lighting

	Lighting

	gateway

	entry2mqtt

	entry2mqtt

	location

	frontgarden

	gate_entry

	device

	gate

	Gate

	device

	bell

	Bell

	action

	gate_open

	GATE_OPEN

	action

	bell_off

	BELL_OFF

	action

	bell_on

	BELL_ON

	action

	light_off

	LIGHT_OFF

	action

	light_on

	LIGHT_ON

	action

	gate_close

	GATE_CLOSE

The map file would then look like this:

{
 "root": "home",
 "topics": ["home/security/+/frontgarden/+/+/C",
 "home/+/entry2mqtt/+/+/+/C",
 "home/+/+/+/entrysystem/+/C"],
 "function": {
 "map": {"security": "Security", "lighting": "Lighting"},
 "maptype": "strict"
 },
 "gateway": {
 "map": {"entry2mqtt": "entry2mqtt"},
 "maptype": "strict"
 },
 "location": {
 "map": {"frontgarden": "gate_entry"},
 "maptype": "strict"
 },
 "device": {
 "map": {"gate": "Gate", "bell": "Bell"},
 "maptype": "strict"
 },
 "sender": {"maptype": "none"},
 "action": {
 "map": {"gate_open": "GATE_OPEN",
 "bell_off": "BELL_OFF",
 "bell_on": "BELL_ON",
 "light_off": "LIGHT_OFF",
 "light_on": "LIGHT_ON",
 "gate_close": "GATE_CLOSE"
 },
 "maptype": "strict"
 },
 "argkey": {"maptype": "none"},
 "argvalue": {"maptype": "none"}
}

Save it in a file named entry_map.json.

A few comments on this suggested mapping:

	most of these keyword mappings only change the case or even nothing; this is for illustration
purposes anyway, but in general it might still be good discipline to list all the keywords in a
mapping to have in one view what the interface can deal with or not. Then if one day some MQTT
keyword needs to change, everything is ready to do so.

	an important choice to make is the maptype for each characteristic. If it is set to
strict, it will enable to filter messages quite early in the process and alleviate the
code of further testing. In our example, even if the gateway map has only one item, which is
even the same on both sides, setting the maptype to strict ensures that only that
keyword is accepted, and any other one is discarded. This is obviously very different from
setting the maptype to none, in which case that only keyword would still be accepted and
left unchanged, but so would any other keyword.

4.5. Wrapping it all up

Once the interface is defined, all is left to do is to create the launch script and
the configuration file. Those 2 steps are easy using the templates.

Copy the dummy project launch script dummy_start.py and paste it
into the entry directory.
Change every instance of dummy into entry`.
If all the naming steps have been respected, the script entry_start.py just created
should work.

To create the configuration file, copy the configuration file dummy2mqtt.conf from
the dummy package and paste it in the folder entry with the name entry2mqtt.conf.
Edit the file and enter the port option under the [INTERFACE] section:

[INTERFACE]
port=/dev/ttyACM0

Obviously input whatever is the correct name of the port, the one shown is generally the one
to use on a Raspberry Pi for the USB serial connection. If you are on Windows, your port
should be something like COM3.

If you went through the installation process, then the MQTT parameters
should already be set up, otherwise do so. Other parameters can be left as they are.
Check the configuration guide for more details.

4.6. Launch

To launch the gateway, just run the launcher script directly from its directory:

python entry_start

Done!

5. Configuration

Note

Coming soon!

In the meantime, the default configuration, which is in the python module
configuration.py inside the gateway package, is well documented
and is a good starting point to understand the various options.

''' The default configuration settings in a single string constant.

.. reviewed 29May2018

.. any changes in CONFIG should be reflected in the dummy2mqtt.conf file.

Use this declaration as a template configuration file.

The configuration loader :mod:`mqttgateway.utils.load_config` only
considers sections and options that are already present in this string
and disregard anything else. If a section or option is found in a configuration
file but is not listed here, it will not be taken into account. Only
sections and options already here are taken into account when found in a configuration
file, and then they overwrite the default values defined here.

The only exception is the ``[INTERFACE]`` section which is reserved to the configuration
parameters needed by the interface being implemented. The section itself is defined here
but no options are present as those are defined by the developper, and those are the only
options that the loader will take into account.

'''

CONFIG = '''

[CONFIG]
Reserved section used by the loader to store the location where
the configuration settings are coming from, or to store
the error if there was one.

[INTERFACE]
Section for whatever options are needed by the gateway interface
being developed. All these options will be written in a
dictionary and passed to the interface.

[MQTT]
The parameters to connect to the MQTT broker
host: 127.0.0.1
port: 1883
keepalive: 60

The client id can be provided here; if left empty it defaults to the application name
clientid:

This is the timeout of the 'loop()' call in the MQTT library
timeout: 0.01

Mapping option. By default it is off.
mapping: off

Map file: there needs to be a mapping file if the <mapping> option is on.
If the <mapfilename> option is left blank, the mapping option is turned
off, whatever the value of the <mapping> option.
To use the default name and path, use a dot <.> for this option.
The default name used is <*application_name*.map>.
See below for other instructions on file names and paths.
mapfilename: .

The 'root' keyword for all MQTT messages.
Only necessary if <mapping> is off, disregarded otherwise
as the keyword should then be found in the mapping file.
root: home

The topics to subscribe to, separated by a comma.
Only necessary if <mapping> is off, disregarded otherwise
as the topics should then be found in the mapping file.
topics: home/dummyfunction/#, home/+/dummy/#

[LOG]
Logs: all WARN level logs and above are sent to stderr or equivalent.
3 more log outputs can be set up: console, rotating files and email.
Log levels: indicate what log levels are required for each log output.
Levels are indicated with the following strings (from the logging module):
CRITICAL, ERROR, WARN or WARNING, INFO and DEBUG; use NONE if unused.

Console level: these are the logs directed to stdout. Usually only used for testing.
consolelevel: NONE

Log file: file location if logs to file is required.
Leave this option blank to not enable a log file.
Use a dot <.> to use the default name and path.
The default name used is <*application_name*.log>.
Make sure the process will have the rights to write in this file.
See below for other instructions on file names and paths.
logfilename:

File level: level for logs directed to the file named by the <logfilename> option.
If that option is blank, there is not file log whatever value is given to the option
<filelevel> (there is no default file).
filelevel: INFO

Number of files required for the rotating files. Default is 3.
filenum:3

Maximum size of each log file, in KB. Default is 50'000.
filesize: 50000

Email credentials; leave empty if not required.
All CRITICAL level logs are sent to this email, if defined.
For now there is no authentication.
emailhost:
for example: emailhost: 127.0.0.1
emailport:
for example: emailport: 25
emailaddress:
for example: address: me@example.com

#--
Note on file paths and names:
- the default name is 'application_name' +
default extension (.log, .map, ... etc);
- the default directories are (1) the configuration file location, (2) the
current working directory, (3) the application directory, which
'should' be the location of the launching script;
- empty file paths have different meaning depending where they are used;
best to avoid;
- file paths can be directory only (ends with a '/') and are appended with
the default name;
- file paths can be absolute or relative; absolute start with a '/' and
relative are prepended with the default directory;
- file paths can be file only (no '/' whatsoever) and are prepended with
the default directory;
- use forward slashes '/' in any case, even for Windows systems, it should
work;
- however for Windows systems, use of the drive letter might be an issue
and has not been tested.
#--

'''

6. Project Decription

Note

Coming soon!

7. mqttgateway package

7.1. Warning

As of 24 May 2018, most of the docstrings are obsolete.
They will be updated gradually as soon as possible.

7.2. Subpackages

	7.2.1. mqttgateway.dummy package
	7.2.1.1. Submodules

	7.2.1.2. mqttgateway.dummy.dummy_start module

	7.2.1.3. mqttgateway.dummy.dummy_interface module

	7.2.1.4. Module contents

	7.2.2. mqttgateway.entry package
	7.2.2.1. Submodules

	7.2.2.2. mqttgateway.entry.entry_start module

	7.2.2.3. mqttgateway.entry.entry_interface module

	7.2.2.4. Module contents

	7.2.3. mqttgateway.gateway package
	7.2.3.1. Submodules

	7.2.3.2. mqttgateway.gateway.configuration module

	7.2.3.3. mqttgateway.gateway.mqtt_client module

	7.2.3.4. mqttgateway.gateway.mqtt_map module

	7.2.3.5. mqttgateway.gateway.start_gateway module

	7.2.3.6. Module contents

	7.2.4. mqttgateway.utils package
	7.2.4.1. Submodules

	7.2.4.2. mqttgateway.utils.app_properties module

	7.2.4.3. mqttgateway.utils.init_logger module

	7.2.4.4. mqttgateway.utils.load_config module

	7.2.4.5. mqttgateway.utils.throttled_exception module

	7.2.4.6. Module contents

7.3. Submodules

7.4. Module contents

Root package for the mqttgateway project.

7.2.1. mqttgateway.dummy package

7.2.1.1. Submodules

7.2.1.2. mqttgateway.dummy.dummy_start module

Launcher script for the dummy interface.

Use this as a template.
If the name conventions have been respected, just change all occurrences of
dummy into the name of your interface.

	
mqttgateway.dummy.dummy_start.main()

	The entry point for the application

7.2.1.3. mqttgateway.dummy.dummy_interface module

The dummy interface class definition. Use it as a template.

This module defines the class dummyInterface that will be instantiated by the
main module in the gateway package.

	
class mqttgateway.dummy.dummy_interface.dummyInterface(params, msglist_in, msglist_out)

	Bases: object

Doesn’t do anything but provides a template.

The minimum requirement for the interface class is to define 2 public
methods:

	the constructor __init__,

	the loop method.

	Parameters

	
	params (dictionary of strings) – contains all the options from the configuration file
This dictionary is initialised by the [INTERFACE] section in
the configuration file. All the options in that section generate an
entry in the dictionary. Use this to pass parameters from the configuration
file to the interface, for example the name of a port, or the speed
of a serial communication.

	((msglist_out) – class:MsgList): list of incoming messages (internal representation)

	(– class:MsgList): list of outgoing messages (internal representation)

	
loop()

	The method called periodically by the main loop.

Place here your code to interact with your system.

7.2.1.4. Module contents

A dummy gateway to test the installation setup, the loading of the
configuration files, and the basic operation of the core application.

7.2.2. mqttgateway.entry package

7.2.2.1. Submodules

7.2.2.2. mqttgateway.entry.entry_start module

7.2.2.3. mqttgateway.entry.entry_interface module

7.2.2.4. Module contents

Package of the entry gateway

7.2.3. mqttgateway.gateway package

7.2.3.1. Submodules

7.2.3.2. mqttgateway.gateway.configuration module

The default configuration settings in a single string constant.

Use this declaration as a template configuration file.

The configuration loader mqttgateway.utils.load_config only
considers sections and options that are already present in this string
and disregard anything else. If a section or option is found in a configuration
file but is not listed here, it will not be taken into account. Only
sections and options already here are taken into account when found in a configuration
file, and then they overwrite the default values defined here.

The only exception is the [INTERFACE] section which is reserved to the configuration
parameters needed by the interface being implemented. The section itself is defined here
but no options are present as those are defined by the developper, and those are the only
options that the loader will take into account.

7.2.3.3. mqttgateway.gateway.mqtt_client module

This is a child class of the MQTT client in the paho library.

It includes the management of reconnection when using only the loop() method
(which is not included natively in the paho library).

Notes on MQTT behaviour:

	if not connected, the loop and publish methods will not do anything,
but raise no errors either.

	the loop method handles always only one message per call.

	
exception mqttgateway.gateway.mqtt_client.connectionError(msg=None)

	Bases: mqttgateway.utils.throttled_exception.ThrottledException

Base Exception class for this module, inherits from ThrottledException

	
class mqttgateway.gateway.mqtt_client.mgClient(host='localhost', port=1883, keepalive=60, client_id='', on_msg_func=None, topics=None, userdata=None)

	Bases: paho.mqtt.client.Client

Class representing the MQTT connection. mg means MqttGateway.

Note: The MQTT paho library sets quite a few attributes in the Client class. They all start
with an underscore. Be careful not to overwrite them.

	Parameters

	
	on_msg_func (function) – takes an MQTT message as argument and is called during on_message().

	topics (list of strings) – e.g.[‘home/audiovideo/#’, ‘home/lighting/#’].

	
lag_end()

	Function to inhibit the connection test during the lag.

There is the possibility of a race condition when testing the connection state too soon
after requesting a connection. This happens if the on_connect() call-back is not called
fast enough and the main loop tests the connection state before that call-back has set the
state to connected. As a consequence the automatic reconnection feature gets triggered
while a connection is already under way, and the connection process gets jammed with the
broker. That’s why we need to leave a little lag before testing the connection.

	
connect()

	Sets up the ‘lag’ feature on top of the parent method.

	
reconnect()

	Sets up the ‘lag’ feature on top of the parent method.

	
loop(timeout)

	Implements automatic reconnection on top of the parent loop method.

The use of the method/attribute lag_test() is to avoid having to test the lag forever
once the connection is established. Once the lag is finished, this method gets replaced
by a simple lambda, which hopefully is much faster than calling the time library and
doing a comparison. Probably a case of premature optimisation though…

7.2.3.4. mqttgateway.gateway.mqtt_map module

This module is the bridge between the internal and the MQTT representation of messages.

As a reminder, we define the MQTT syntax as follows:

	topic: root/function/gateway/location/device/sender/type-{C or S}

	payload: action or status, in plain text or in a json string e.g. {key1:value1,key2:value2,..}

	
class mqttgateway.gateway.mqtt_map.internalMsg(iscmd=False, function=None, gateway=None, location=None, device=None, sender=None, action=None, arguments=None)

	Bases: object

Defines all the characteristics of an internal message.

Behaviour of None: even if it could be interesting to differentiate between a
characteristic set to None and one set to an empty string (an empty string could still
be mapped for example), currently they are considered the same, i.e. a non existent value.
Therefore None values are converted always to empty strings.

	Parameters

	
	iscmd (bool) – Indicates if the message is a command (True) or a status (False), optional

	function (string) – internal representation of function, optional

	gateway (string) – internal representation of gateway, optional

	location (string) – internal representation of location, optional

	device (string) – internal representation of device, optional

	sender (string) – internal representation of sender, optional

	action (string) – internal representation of action, optional

	arguments (dictionary of strings) – all values should be assumed to be strings, optional

	
copy()

	Creates a copy of the message.

	
str()

	Stringifies a class instance.

	
reply(response, reason)

	Formats the message to be sent as a reply to an existing command

This method is supposed to be used with an existing message that has been received.
Using this method for all replies guarantees a consistent syntax for replies.

	Parameters

	
	response (string) – code or abbreviation for response, e.g. OK```or ``ERROR

	reason (string) – longer description of the response

	
class mqttgateway.gateway.mqtt_map.MsgList

	Bases: Queue.Queue, object

Implementation of a Queue list just in case its needed.

The methods are called push and pull in order to differentiate them from the
usual names (put, get, append, pop, …).
TODO: implement maxsize and timeout.

	
push(item)

	Equivalent to self._list.append(item)

	
pull()

	Equivalent to self._list.pop(0)

	
class mqttgateway.gateway.mqtt_map.mappedTokens(function, gateway, location, device, sender, action, argkey, argvalue)

	Bases: tuple

Tokens representing a message that can be mapped.

	
action

	Alias for field number 5

	
argkey

	Alias for field number 6

	
argvalue

	Alias for field number 7

	
device

	Alias for field number 3

	
function

	Alias for field number 0

	
gateway

	Alias for field number 1

	
location

	Alias for field number 2

	
sender

	Alias for field number 4

	
mqttgateway.gateway.mqtt_map.NO_MAP = {'action': {'maptype': 'none'}, 'argkey': {'maptype': 'none'}, 'argvalue': {'maptype': 'none'}, 'device': {'maptype': 'none'}, 'function': {'maptype': 'none'}, 'gateway': {'maptype': 'none'}, 'location': {'maptype': 'none'}, 'root': '', 'sender': {'maptype': 'none'}, 'topics': []}

	Default map, with no mapping at all.

	
class mqttgateway.gateway.mqtt_map.msgMap(jsondict=None)

	Bases: object

Contains the mapping data and the conversion methods.

The mapping data is read from a JSON style dictionary.
To access the maps use: mqtt_token = maps.*field*.i2m(internal_token)
Example: mqtt_token = maps.gateway.i2m(internal_token)

	Parameters

	jsondict (dictionary) – contains the map data in the agreed format;
if None, the NO_MAP structure is used.

	
class tokenMap(maptype, mapdict=None)

	Bases: object

Represents the mapping for a given token or characteristic.

Each instantiation of this class represent the mapping for a given
token, and contains the type of mapping, the mapping dictionary if
available, and the methods to convert the keywords back and forth between
MQTT and internal representation.

The mapping dictionary passed as argument has the internal keywords as keys and
as value a list of corresponding MQTT keywords. Only the first of the list will be
used for the reverse dictionary, the other MQTT keywords being ‘aliases’.

	Parameters

	
	maptype (string) – type of map, should be either ‘strict’. ‘loose’ or ‘none’

	mapdict (dictionary) – dictionary representing the mapping

	
m2i(mqtt_token)

	Generic method converting an MQTT token into an internal characteristic.

	
i2m(internal_token)

	Generic method converting an internal characteristic into an MQTT token.

	
sender()

	Getter for the _sender attribute.

	
mqtt2internal(mqtt_msg)

	Converts the MQTT message into an internal one.

	Parameters

	mqtt_msg (mqtt.MQTTMessage) – a MQTT message.

	Returns

	the conversion of the MQTT message

	Return type

	internalMsg object

	Raises

	ValueError – in case of bad MQTT syntax or unrecognised map elements

	
internal2mqtt(internal_msg)

	Converts an internal message into a MQTT one.

	Parameters

	internal_msg (internalMsg) – the message to convert

	Returns

	a full MQTT message where topic syntax is
root/function/gateway/location/device/sender/{C or S} and
payload syntax is either a plain action or a JSON string.

	Return type

	a MQTTMessage object

	Raises

	ValueError – in case a token conversion fails

	
mqttgateway.gateway.mqtt_map.test()

	docstring

	
mqttgateway.gateway.mqtt_map.reverse()

	

7.2.3.5. mqttgateway.gateway.start_gateway module

Defines the function that starts the gateway.

	
mqttgateway.gateway.start_gateway.startgateway(gateway_interface)

	Entry point.

7.2.3.6. Module contents

The package representing the core of the application.

There are 4 modules:

	mqtt_client.py defines the child class of the official MQTT
Client class of the paho library;

	mqtt_map.py defines the classes internalMsg and
msgMap;

	start_gateway.py which contains the script for the
application initialisation and main loop.

	configuration.py which contains the default configuration as a string.

This package uses the logger help provided by mqttgateway.utils.app_properties.
The Properties object should have been already initialised by the application
using this library.
However, if that is not the case, the initialisation is done here with default parameters.
As a consequence, the main application should initialise Properties before
importing anything from this package.

7.2.4. mqttgateway.utils package

7.2.4.1. Submodules

7.2.4.2. mqttgateway.utils.app_properties module

Application wide properties.

This module is an alternative to a singleton.
It keeps some application variables in the module namespace making them effectively global.
At startup, the module should be imported straight away so that it creates an AppProperties object
called Properties that is global, and initialised with mostly empty values, except the init
attribute which is essentially the constructor.

	
class mqttgateway.utils.app_properties.AppProperties(name, directories, config_file_path, root_logger, init, get_path, get_logger)

	Bases: tuple

	
config_file_path

	Alias for field number 2

	
directories

	Alias for field number 1

	
get_logger

	Alias for field number 6

	
get_path

	Alias for field number 5

	
init

	Alias for field number 4

	
name

	Alias for field number 0

	
root_logger

	Alias for field number 3

7.2.4.3. mqttgateway.utils.init_logger module

Function to initialise a logger with pre-defined handlers.

	
mqttgateway.utils.init_logger.initlogger(logger, logfiledata, emaildata)

	Initialise the logging environment for the application.
from cgi import logfile

The logger passed as parameter should be sent by the ‘root’ module if
hierarchical logging is the objective. The logger is then initialised with
the following handlers:

	the standard ‘Stream’ handler will always log level WARN and above;

	a rotating file handler, with fixed parameters (max 50kB, 3 rollover
files); the level for this handler is DEBUG if the parameter ‘log_debug’ is
True, INFO otherwise; the file name for this log is given by the
log_filepath parameter which is used as is; an error message is logged in
the standard handler if there was a problem creating the file;

	an email handler with the level set to CRITICAL;

	Args:

	logger: the actual logger object to be initialised;
logfiledata (tuple): 3 elements tuple made of

[0] = logfilepath (string): the log file path, if None, file logging is disabled;
[1] = filelevel (string): the level of log to be sent to the file, or NONE;
[2] = consolelevel (string): the level of log to be sent to the console (stdout), or NONE.

	emaildata (tuple): 4 elements tuple; no email logging if either of first 3 values invalid

	[0] = host (string),
[1] = port (int),
[2] = address (string), ,is enabled;
[3] = app_name (string).

	Returns:

	Nothing

	Raises:

	any IOErrors thrown by file handling methods are caught.

7.2.4.4. mqttgateway.utils.load_config module

Function to facilitate the loading of configuration parameters.

Based on ConfigParser.

	
mqttgateway.utils.load_config.loadconfig(cfg_dflt_string, cfg_filepath)

	The configuration is loaded with the help of the python library ConfigParser
and the following convention.

The default configuration is represented by the string passed as argument
cfg_dflt_string. This string is expected to have all the necessary
sections and options that the application will need, with their default
values. All options need to be listed there, even the ones that HAVE to be
updated and have no default value. This default configuration is declared
as a constant string, and is also the template for the actual configuration file.

The function ‘loads’ this default configuration, then checks if the
configuration file is available, and if found it grabs only the values from
the file that are also present in the default configuration. Anything else
in the file is not considered, except for the [INTERFACE] section (see below).
The result is a configuration object with all
the necessary fields, updated by the file values if present, or with the
default values if not. The application can therefore call all fields without
index errors.

The exception to the above process in the [INTERFACE] section. The options
of this section will be loaded ‘as is’ in the Config object. This section can be
used to define ad-hoc options that are not in the default configuration.

Finally, the function updates the option ‘location’ in the
section [CONFIG] with the full path of the configuration file used, just in
case it is needed later. It also ‘logs’ the error in the ‘error’ option of the
same section, if any OS exception occurred while opening or reading the configuration file.

	Parameters

	
	cfg_dflt_string (string) – represents the default configuration.

	cfg_filepath (string) – the path of the configuration file; it is used ‘as is’
and if it is relative there is no guarantee of where it will actually point…
Better send an absolute path then.

	Returns

	object loaded with the parameters.

	Return type

	ConfigParser.RawConfigParser object

7.2.4.5. mqttgateway.utils.throttled_exception module

An exception class that throttles events in case an error is triggered too often.

	
exception mqttgateway.utils.throttled_exception.ThrottledException(msg=None, throttlelag=10, module_name=None)

	Bases: exceptions.Exception

Exception class base to throttle events

This exception can be used as a base class instead of Exception.
It adds a counter and a timer that allow to silence the error for a while if
desired. Only after a given period a trigger is set to True to indicate that a number
of errors have happened and it is time to report them.

It creates 2 members:

	trigger is a boolean set to True after the requested lag;

	report is a string giving some more information on top of the latest message.

The code using these exceptions can test the member trigger and decide to silence
the error until it is True. At any point one can still decide to use these exceptions
as normal ones and ignore the trigger and report members.

Usage:

try:
 some statements that might raise your own exception derived from ThrottledException
except YourExceptionError as err:
 if err.trigger:
 log(err.report)

	Parameters

	
	msg (string) – the error message, as for usual exceptions, optional

	throttlelag (int) – the lag time in seconds while errors should be throttled, defaults
to 10 seconds

	module_name (string) – the calling module to give extra information, optional

7.2.4.6. Module contents

Utilities package

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mqttgateway	

 	
 	
 mqttgateway.dummy	

 	
 	
 mqttgateway.dummy.dummy_interface	

 	
 	
 mqttgateway.dummy.dummy_start	

 	
 	
 mqttgateway.entry	

 	
 	
 mqttgateway.gateway	

 	
 	
 mqttgateway.gateway.configuration	

 	
 	
 mqttgateway.gateway.mqtt_client	

 	
 	
 mqttgateway.gateway.mqtt_map	

 	
 	
 mqttgateway.gateway.start_gateway	

 	
 	
 mqttgateway.utils	

 	
 	
 mqttgateway.utils.app_properties	

 	
 	
 mqttgateway.utils.init_logger	

 	
 	
 mqttgateway.utils.load_config	

 	
 	
 mqttgateway.utils.throttled_exception	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	action (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	AppProperties (class in mqttgateway.utils.app_properties)

 	
 	argkey (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	argvalue (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

C

 	
 	config_file_path (mqttgateway.utils.app_properties.AppProperties attribute)

 	connect() (mqttgateway.gateway.mqtt_client.mgClient method)

 	
 	connectionError

 	copy() (mqttgateway.gateway.mqtt_map.internalMsg method)

D

 	
 	device (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	
 	directories (mqttgateway.utils.app_properties.AppProperties attribute)

 	dummyInterface (class in mqttgateway.dummy.dummy_interface)

F

 	
 	function (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

G

 	
 	gateway (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	
 	get_logger (mqttgateway.utils.app_properties.AppProperties attribute)

 	get_path (mqttgateway.utils.app_properties.AppProperties attribute)

I

 	
 	i2m() (mqttgateway.gateway.mqtt_map.msgMap.tokenMap method)

 	init (mqttgateway.utils.app_properties.AppProperties attribute)

 	
 	initlogger() (in module mqttgateway.utils.init_logger)

 	internal2mqtt() (mqttgateway.gateway.mqtt_map.msgMap method)

 	internalMsg (class in mqttgateway.gateway.mqtt_map)

L

 	
 	lag_end() (mqttgateway.gateway.mqtt_client.mgClient method)

 	loadconfig() (in module mqttgateway.utils.load_config)

 	
 	location (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	loop() (mqttgateway.dummy.dummy_interface.dummyInterface method)

 	(mqttgateway.gateway.mqtt_client.mgClient method)

M

 	
 	m2i() (mqttgateway.gateway.mqtt_map.msgMap.tokenMap method)

 	main() (in module mqttgateway.dummy.dummy_start)

 	mappedTokens (class in mqttgateway.gateway.mqtt_map)

 	mgClient (class in mqttgateway.gateway.mqtt_client)

 	mqtt2internal() (mqttgateway.gateway.mqtt_map.msgMap method)

 	mqttgateway (module)

 	mqttgateway.dummy (module)

 	mqttgateway.dummy.dummy_interface (module)

 	mqttgateway.dummy.dummy_start (module)

 	mqttgateway.entry (module)

 	mqttgateway.gateway (module)

 	
 	mqttgateway.gateway.configuration (module)

 	mqttgateway.gateway.mqtt_client (module)

 	mqttgateway.gateway.mqtt_map (module)

 	mqttgateway.gateway.start_gateway (module)

 	mqttgateway.utils (module)

 	mqttgateway.utils.app_properties (module)

 	mqttgateway.utils.init_logger (module)

 	mqttgateway.utils.load_config (module)

 	mqttgateway.utils.throttled_exception (module)

 	MsgList (class in mqttgateway.gateway.mqtt_map)

 	msgMap (class in mqttgateway.gateway.mqtt_map)

 	msgMap.tokenMap (class in mqttgateway.gateway.mqtt_map)

N

 	
 	name (mqttgateway.utils.app_properties.AppProperties attribute)

 	
 	NO_MAP (in module mqttgateway.gateway.mqtt_map)

P

 	
 	pull() (mqttgateway.gateway.mqtt_map.MsgList method)

 	
 	push() (mqttgateway.gateway.mqtt_map.MsgList method)

R

 	
 	reconnect() (mqttgateway.gateway.mqtt_client.mgClient method)

 	reply() (mqttgateway.gateway.mqtt_map.internalMsg method)

 	
 	reverse() (in module mqttgateway.gateway.mqtt_map)

 	root_logger (mqttgateway.utils.app_properties.AppProperties attribute)

S

 	
 	sender (mqttgateway.gateway.mqtt_map.mappedTokens attribute)

 	sender() (mqttgateway.gateway.mqtt_map.msgMap method)

 	
 	startgateway() (in module mqttgateway.gateway.start_gateway)

 	str() (mqttgateway.gateway.mqtt_map.internalMsg method)

T

 	
 	test() (in module mqttgateway.gateway.mqtt_map)

 	
 	ThrottledException

Welcome to mqttgateway

mqttgateway is a python wrapper to build consistent gateways to an MQTT network.

What it does:

	it deals with all the boilerplate code to manage an MQTT connection, load configuration
and other data files, and create log handlers,

	it encapsulates the interface in a class that needs only 2 methods __init__ and loop,

	it creates an intuitive messaging abstraction layer between the wrapper and the interface,

	it can isolate the syntax and keywords of the MQTT network from the internal ones of the interface.

Who is it for:

Developers of MQTT networks in a domestic environment looking to adopt a definitive syntax for their
MQTT messages and to build gateways with their devices that are not MQTT enabled.

Available interfaces

Check the existing fully developped interfaces. Their names usually follows the
pattern <interface_name>2mqtt, for example
musiccast2mqtt [https://musiccast2mqtt.readthedocs.io/].

This library comes with 2 interfaces:

	dummy: to test the environment and use as a template;

	entry: example used for the tutorial.

Links

	Documentation on readthedocs [http://mqttgateway.readthedocs.io/].

	Source on github [https://github.com/ppt000/mqttgateway].

	Distribution on pypi [https://pypi.org/project/mqttgateway/].

 _static/up-pressed.png

_static/up.png

_images/domestic_iot.png
DOMESTIC IOT

BEDROOM

OFFICE

BASEMENT No LOCATION

_images/entry2mqtt.png
entry2mqtt GATEWAY

HOST

mqtt_gateways
* Maps MQTT and internal messages
* Managesthe MQTT connection

entrylnterface

* Connects to MCU via USB on serial
maQrr protocol.

Broker Converts raw messages from MCU
into internal messages to send
events to MQTT eco-system.
Converts internal messages into
raw commands to send to MCU.

waysAs Auz aen

_images/basic_diagram.png
qttgateway
m

1O
1O
1O
1O

_images/iot_parameters.png
4 Identification Parameters:

Device~~_ _

Location - _ S~ -

Gateway Sso ~~ .
\ N N
* Function, » N
N

I
’
i

BEDROOM

OFFICE

LIGHTING «--------=""""""

KITCHEN

.

BASEMENT

Y <

GATEWAY

MQTT View

T7» OFFICE
SECURITY

GATEWAY

|

GARAGE
SECURITY

No LOCATION

AUDIO-VIDEO

BEDROOM

OFFICE

KITCHEN

AUDIO-VIDEO

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to mqttgateway

 		
 Overview

 		
 Objective

 		
 Concepts

 		
 Usage

 		
 Installation

 		
 Installation

 		
 Download

 		
 Configuration

 		
 Launch

 		
 First Run

 		
 The mapping data

 		
 Deploying a gateway

 		
 Concepts

 		
 The message model

 		
 Example

 		
 Message Addressing

 		
 Message Content

 		
 Message Source

 		
 Bridging MQTT and the interface

 		
 The internal message class

 		
 The conversion process

 		
 The MQTT syntax

 		
 The mapping data

 		
 Tutorial

 		
 The Need

 		
 The Solution

 		
 Implementation

 		
 The interface

 		
 The constructor

 		
 The loop method

 		
 Other coding strategies

 		
 The map file

 		
 Wrapping it all up

 		
 Launch

 		
 Configuration

 		
 Project Description

 		
 Package Documentation

 		
 Warning

 		
 Subpackages

 		
 mqttgateway.dummy package

 		
 mqttgateway.entry package

 		
 mqttgateway.gateway package

 		
 mqttgateway.utils package

 		
 Submodules

 		
 Module contents

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

